Nutrition and Fasting Mimicking Diets in the Prevention and Treatment of Autoimmune Diseases and Immunosenescence

In Young Choi, Changhan Lee, and Valter D. Longo

1Longevity Institute, School of Gerontology, and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
2Department of Microbiology, Immunology, Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
3Department of Neuroscience, Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
4Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
5IFOM, FIRC Institute of Molecular Oncology, 20139 Milan, Italy
*Correspondence: vlongo@usc.edu

Abstract

Complex and coordinated signals are necessary to initiate and sustain the activation, proliferation, and differentiation of lymphocytes. These signals, which are known to determine T-cell fate and function, also depend on the metabolic state of the organism. Recent studies indicate that both the type and levels of nutrients can influence the generation, survival and function of lymphocytes and therefore can affect several autoimmune diseases. Here, we review the dysregulation of lymphocytes during autoimmunity and aging, the mechanisms associated with loss of immune function, and how fasting mimicking diets and other dietary interventions affect autoimmunity and immunosenescence.

Introduction

Aging is associated with a progressive functional decline of the immune system, commonly referred to as immunosenescence. There are several consequences of age-dependent
immunosenescence, including increased susceptibility to infection and autoimmune diseases, reduced response to vaccination, and chronic inflammation. In general, men experience a stronger age-dependent alteration of immune function than women.

T cells, which are derived from hematopoietic stem cells (HSCs), mature in the thymus. The T cell repertoire is generated in the thymus by TCR rearrangement, including the purging of thymocytes that recognize self-peptides via negative selection. Thymic activity progressively declines after puberty, and such involution has been thought to underlie the age-dependent decline in T lymphocyte number/diversity and increase in autoimmunity. However, recent evidence suggests that thymic involution itself may not be sufficient to account for the reduction of T cell repertoire and number. Another cause of the age-dependent decline in the adaptive immune system is the age-dependent decline of HSC function. Young HSCs possess a balanced potential to differentiate into myeloid and lymphoid lineage cells that later become components of the innate and adaptive immune system. However, aged HSCs preferentially give rise to myeloid cells rather than lymphoid cells, accompanied by a decline in common lymphoid progenitors (CLPs), and ultimately reduced T and B cell lymphogenesis that can cause stem cell exhaustion and reduced regenerative capacity.

The rejuvenation of HSCs to reverse or postpone immunosenescence has recently received much attention. Dietary restriction (DR) is an effective and reproducible intervention to increase healthy lifespan in various model organisms. The major DR regimens include caloric restriction (CR), intermittent fasting (IF), time-restricted feeding (TRF), restriction of specific macronutrients, ketogenic diets (KD), and periodic fasting (PF) or fasting-mimicking diets (FMDs) (Table 1). However, studies of the effects of many dietary interventions on the immune system have yielded different results, with chronic calorie...
restriction resulting in both positive and negative effects on the immune system and immune responses18. In addition, CR requires significant life-style changes, making them challenging to adhere to, especially for frail patients and older individuals. However, certain periodic dietary restrictions have the potential to prevent and/or reverse age-dependent immune dysfunction by killing autoimmune cells and activating HSC-dependent regeneration while minimizing the burden of the intervention and the side effects 19-21. Here, we will discuss the potential of various DR regimens in the treatment of autoimmune diseases and the mechanisms that may mediate these effects.

Metabolism and Immune Response

The immune system is tightly regulated by nutrient availability and metabolism22. Leukocytes utilize oxidative metabolism in a resting state, but upon activation they switch to a more anabolic state that relies on aerobic glycolysis, a process that converts glucose into lactate even in the presence of sufficient oxygen to support oxidative phosphorylation 1,3,23 (Fig. 1). The switch to glycolytic metabolism increases the availability of carbon sources which can be converted to biosynthetic precursors that required for cellular proliferation 23. This metabolic reprogramming is, in part, regulated by hexokinase II24 and the phosphoinositide 3-kinase (PI3K)-dependent glucose transporter Glut125. Glut1 overexpression in mice resulted in an increase in not only the number of naïve T cells, but also the number of CD4high T cells (activated T cells) 26. T-cell specific Glut1 deletion resulted in impaired CD4+ T cell activation, clonal expansion and survival26. Amino acids, in particular glutamine, are key sources of biosynthetic precursors for activated T cells 27,28. Upon activation, T cells increase the expression of glutamine transporters; conversely, glutamine transporter deletion impairs T effector cell differentiation 27,28. Glutamine utilization, which requires ASC amino-acid transporter 2 (ASCT2), influences the development
and differentiation of pro-inflammatory Th1 and Th17 cells and also T cell receptor (TCR)-stimulated activation of the metabolic kinase mammalian target of rapamycin complex 1 (mTORC1)29. In a subsequent study, it was shown that proliferation and differentiation of T-cells upon activation require amino acid transporters, specifically system L transporter (Slc7a5) that mediates the uptake of large neutral amino acids (LNAA)s30. Loss of Slc7a5 reduces the proliferation and differentiation of CD4+ and CD8+ T cells and promotes regulatory T cells (Treg). Deficient LNAA uptake due to loss of Slc7a5 leads to reduced c-Myc expression which is critical for boosting activation-induced glycolysis and glutaminolysis in T cells30,31. Moreover, intracellular leucine concentration can affect mTORC1 activation via regulating cytosolic branched chain aminotransferases (BCATc)32. BCATc expression was up-regulated in activated CD4+ T cells, and BCATc deficiency led to increased intracellular leucine and enhanced mTORC1 activity and glycolytic phenotype32.

The importance of mTOR dependent T-cell fate has also emerged in recent years. The activation of mTOR, which is a catalytic subunit of mTORC1 and mTORC2, directs the proper activation and differentiation of effector CD4+ T cells. Suppression of mTOR1 with rapamycin promoted the generation of FoxP3+ Treg33, and T cell specific deletion of mTOR increased the production of Treg upon activation34. Interestingly, stimulation of HIF-1 activity, which is downstream of mTOR, shifted T cell differentiation into Th17, but deficiency of HIF-1 increased the generation of Treg cells. Consistently, Treg-specific deletion of raptor, an essential component of mTORC1, decreased the suppressive activity of Tregs \textit{in vivo} and promoted the development of a fatal early onset inflammatory disorder34,35.

\textbf{Metabolism in Autoimmune Diseases and Aging}
Autoimmune and allergic diseases (e.g. asthma, lupus, multiple sclerosis (MS), and rheumatoid arthritis (RA)) are characterized by dysfunctional lymphocytes and metabolic dysregulation. In asthma patients, CD4$^+$ T cells exhibit increased glycolysis, measured by increased lactate production levels36. Notably, naïve CD4$^+$ T cells from both asthma patients and a mouse asthma model resulted in higher amounts of lactate production upon stimulation, suggesting increased glycolysis 36. The inhibition of glycolysis in CD4$^+$ T cells by dichloroacetate (DCA), an inhibitor of aerobic glycolysis blocked T cell activation and the development of asthma, while promoting IL-10 production and Treg differentiation 36. In contrast, in a murine lupus model, splenocytes showed increased glucose oxidation level, possibly indicating an increased activity of the TCA cycle37. In a recent study, normalizing CD4$^+$ T cell metabolism by a combination treatment with metformin, a mitochondrial respiration inhibitor, and 2-deoxy-D-glucose (2DG), a glycolytic inhibitor, reversed disease biomarker in lupus-prone B6.Sle1.Sle2.Sle3 (TC) mouse model and caused a reduction in IFN-γ production \textit{in vitro} 38. In multiple sclerosis (MS), increased levels of glutamine and glutamate release have been detected at the site of demyelination and axonal degeneration, possibly correlating with disease severity39. CD4$^+$ T cells from MS patients showed an over-activation of the mTOR pathway40,41 which may indicate a dysregulation of the amino acid sensing signaling supporting a significantly lower percentage of nTreg (natural regulatory T) cells observed in relapse-remitting MS (RRMS) patients42. In rheumatoid arthritis (RA), CD4$^+$ T cells from the patients failed to produce as much ATP and lactate as healthy control T cells even under proliferating condition43. In CD4$^+$ T cells from RA patients, the enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphate 3 (PFKFB3), which is a rate-limiting enzyme in the glycolytic pathway, was suppressed43. Dysfunction of PFKFB3 leads to impaired glycolytic flux, apoptosis-susceptibility, and increased reactive
oxygen species (ROS) production during T cell activation. It was further confirmed that several glycolytic enzymes in the lymphocytes of RA patients, such as glucose-6-phosphate isomerase, aldolase and enolase, have been identified as antigens recognized by autoantibodies.

In addition to autoimmune and inflammatory diseases, aging promotes immune dysfunction. Age largely affects the adaptive immune response, especially that based on T and B lymphocytes. Immune cells in older organisms show a skewed metabolism toward glycolysis, which is associated with immunosenescence. Such age-dependent changes include a general decline of total T lymphocytes, with a significant reduction in the number and proportion of naïve T cells and both helper/inducer (CD4+) and suppressor/cytotoxic (CD8+) cells.

Also, the T lymphocyte repertoire, generated by excisional T cell receptor (TCR) gene rearrangement, diminishes with age as measured by TCR-rearrangement excision circles (TREC) and the TCR signaling cascade, including Raf-1/MEK/ERK kinases, JNK protein kinase, ZAP-70 kinases, and Ca²⁺ release, can be impaired in elderly people. Contributing to immune dysfunction is also the reduced efficiency of the aged immune system in eliminating self-recognizing antibodies, increasing the incidence of autoimmunity resulting from the combination of dysfunctional T and B lymphocytes.

Nutrition and Autoimmunities

Different forms of dietary restrictions can increase lifespan and protect multiple aging systems. However, the view that all types of dietary restriction can be somehow equivalent leading to similar changes, including those related to autoimmunities, is simplistic and probably incorrect. In fact, it is now clear that CR can be either effective or ineffective in promoting longevity or disease reduction depending on its dietary composition. For example, a study done by the National Institute on Aging (NIA) in 2012 shows that there are no significant health
benefits and no difference in life-span extension for caloric restricted rhesus monkeys, regardless of whether the CR regimen implemented in young or older age rhesus monkeys. In contrast, another study done by the Wisconsin National Primate Research Center in 2014 shows improved survival associated with 30% CR initiated in adult rhesus monkey (7-14 years). In this study the *ad lib* control monkeys had a threefold increased risk of death and a risk of disease 2.9 times higher than that of the calorie-restricted monkeys. These contrasting CR results on the longevity and the healthspan of monkeys may be due to differences in dietary composition and varying protein content which can have an impact on CR-induced cellular protection. Thus, it is essential to begin to consider and discuss the effects of different forms of restriction, whether they involve calories or composition, separately and also use terminology and abbreviations that accurately identify the type of restriction, duration, and the mode of use. For example, CR is generally understood to describe a 20-40% restriction of calories below *ad libitum* levels, whereas DR is a much more inclusive term that can refer to the restriction of calories or of specific macronutrients (Table 1). IF, which can also be interchangeable with alternate day feeding (ADF), instead refers to the alternation of a day of feeding and a day of either water only fasting or a very low calorie diet. In contrast, periodic fasting (PF) refers to two or more consecutive days of fasting that is done periodically; this can range from every week to every several months. These definitions and classifications are particularly important in the identification and understanding of the dietary interventions that affect autoimmunity since they can have drastically different, and in some cases opposite, effects on both immune cells and on the regeneration of cells and tissues damaged by the autoimmunity.

PF or a low protein and sugar and high fat 48 to 72 hours FMD, which provides calories in a quantity and form that does not interfere with the effects of water only fasting, can result in a
40% or greater decrease in serum glucose levels in rodents17 and a 20% or greater decrease in serum glucose in humans58. During the initial fasting period, cells utilize liver glycogen as the main energy source, and then switch to a metabolic mode in which non-hepatic glucose, fat-derived ketone bodies and free fatty acids are used for energy58. PF also leads to a dramatic reduction in certain growth factors, particularly the insulin-like growth factor 1 (IGF-1), which is a key signaling molecule for cellular growth and an inhibitor of both cell protection and regeneration58. Some of the changes that are shared by chronic CR and PF in mice are reduced protein synthesis rate, reduced AKT activity65 and mTOR/S6K activities, increased 4E-BP1 activity66 and increased activity of FOXO transcription factors58, 67, all of which have been implicated in both CR and PF-dependent longevity extension. These changes in metabolic sensing pathway upon CR and PF have shown to be clinically relevant for cancer treatment and prevention including potentially ameliorating several side effects cause by chemotherapy in humans68, and protection from chemotherapy-induced toxicity and sensitization from a range of cancer cells to chemotherapy in mice69, 70. It is widely known that cancer cells rely more on glycolysis than on oxidative phosphorylation known as the Warburg effect. Fasting-based reduction in glucose but also in other nutrients and factors on which cancer cells rely, contribute to the increased cancer cells’ sensitivity towards the chemotherapy64. As described in the previous sections, immune cells, during hyper-activation following antigen-specific T cell activation or during autoimmune response, utilize a similar strategy to generate the energy carriers and metabolic intermediates needed to produce biomass and inflammatory mediators71. Therefore, PF may kill cancer and immune cells, particularly the more active autoimmune cells, by partially overlapping mechanisms that are poorly understood.

\textbf{Multiple Sclerosis}
MS is an autoimmune disorder characterized by T cell-mediated demyelination and neurodegeneration of the central nervous system (CNS), whose exact etiology remains unclear. The autoimmune view of MS is strongly supported by the use of the animal experimental autoimmune encephalomyelitis (EAE) model, which displays some of the key MS characteristics. For example, during the activation phase, the antigen presenting cells migrate to the lymph nodes and present the immunodominant peptide to naïve T cells, and the histocompatibility (MHC) Class II-restricted CD4+ T cells secrete many inflammatory cytokines such as IFN-γ, TNFα, IL-6, and IL-17. During the effector phase, CD4+ T cells that recognize antigen proliferate, cross the blood-brain barrier and subsequently activate macrophages and microglia that cause demyelination, oligodendrocyte death, and axon degeneration. As the disease progresses, remyelination and regeneration of oligodendrocyte become inefficient and ultimately fail, resulting in disease progression. Several MS treatment drugs have been effective in reducing immune responses, but their impact on long-term disease progression, accrual of irreversible neurological disability, and the function of the immune system remains largely unclear. The limitation of pharmacological immune-modulating treatments is due to both the relatively non-specific inhibition of immune responses leading to immunosuppression and the failure to repair the damaged myelin in the affected tissues.

Although we are only beginning to understand the relationship between nutrients, fasting and autoimmune disorders, the dietary treatment of MS and other autoimmune diseases has high potential, since it may stimulate and take advantage of the ability of the organism to repair and replace its damaged cells without interfering with the function of normal cells and systems.

Dietary Restriction and Multiple Sclerosis Prevention
Dietary restriction in MS prevention in murine models

Virtually all chronic CR studies in mouse MS model have shown effects on prevention and not treatment, possibly because cycles of the combination of restriction and re-feeding as well as the severity, type and length of the restriction, not simply chronic CR optimizes the effects on MS pathology and symptoms. Chronic moderate to severe CR (33-60%) has been shown to promote protective effects in the prevention of EAE in various MS models \(^{84,85}\). After chronic CR, 33% or 40% of mice showed a minor decrease in the EAE induction and disease severity but were protected from EAE induced inflammation, demyelination, and axon injury\(^{84,85}\). Interestingly, only severe CR (66% caloric restricted group) completely prevented EAE induction\(^{84,85}\).

Similarly, a chronic ketogenic diet, consisting of a 4:1 ratio of fat to carbohydrate and protein\(^{86}\), has been reported to serve as a preventive measure against EAE\(^{87}\). However, similar to the effect of chronic moderate CR, KD did not completely prevent the EAE disease induction but reduced the severity of the disease\(^{87}\). Intermittent fasting (IF), where fasting is applied every other day, was also shown to improve EAE disease severity\(^{88}\). Eight weeks of IF prior to the EAE immunization completely protected mice from EAE induction compared to 75% incident rate of \textit{ad libitum} group\(^{88}\). Although the exact mode of these protective effects are still under active investigation, these dietary interventions showed similar changes in immune response including a significant reduction in circulating and CNS-derived CD4\(^+\) and CD8\(^+\) T cells and CD11b\(^+\)CD45\(^+\) cells (macrophages and microglia) compared to the control diet group, and markedly reduced cytokines (IL-1\(\beta\), IL-6, TNF-\(\alpha\), IL-12, IL-17) and chemokines (IFN-\(\gamma\), MCP-1, MIP-1\(\alpha\), MIP-1\(\beta\)) \(^{84,85,87,88}\).

Fasting Mimicking Diets as a Treatment for MS and Other Autoimmunities

\textit{Fasting and murine MS models}
Some of the major limitations of the chronic dietary restrictions listed above are: 1) that they would be very difficult to adopt for the great majority of the population, 2) that they can cause both protective and detrimental effects including impaired immune responses and would healing, 3) that they are effective in the prevention but not treatment of MS. Furthermore, these dietary interventions fail to address one of the core aspects of MS treatment, which is the need to stimulate both the regeneration of functional white blood cells and the remyelination at the demyelinated lesions either by stimulating myelin production or regenerating oligodendrocyte from oligodendrocyte precursor cells. Periodic treatment with a fasting mimicking diet (FMD) with a very low calorie and protein content has the potential to overcome the limitations listed above. FMD cycles were shown to attenuate EAE symptoms by modulating immune cells and promoting oligodendrocyte precursor cell regeneration89. This study showed that a periodic fasting mimicking dietary intervention has potent MS treatment effects in mice but also that it has the potential to minimize side effects as well as compliance issues. FMD cycles not only resulted in a reduction in dendritic cells which are known to play an important role as antigen presenting cells (APC) that secrete cytokines responsible for activating T lymphocytes, but also reduced circulating MOG\textsubscript{35-55} specific CD4+ T cells, Th1 and Th17 cells and reduced serum cytokines such as IFN-\gamma, IL-17 and TNF-\alpha. Furthermore, the FMD treatment increased anti-inflammatory CD4+ Treg. It was previously shown that during the cycles of the prolonged fasting, the immune cells undergo system-wide apoptosis followed by hematopoietic stem cell based regeneration upon re-introduction of nutrients (re-feeding period) in IGF-1-PKA dependent manner21. Similarly, FMD cycles cause apoptosis of autoreactive T cells, which are replaced by newly generated naïve T cells during re-feeding period89 (Fig. 2). More importantly,
the FMD treatments promoted oligodendrocyte precursor cell dependent regeneration of oligodendrocyte, which is known to participate in remyelination of demyelinated axons.

Dietary restrictions in human clinical trials

In a human clinical trial, a 7-day cycle of a FMD followed by 6 months of a Mediterranean diet, was reported to be safe and feasible. A chronic KD intervention also resulted in potentially positive effects on relapse-remitting MS (RRMS) patients. Moreover, both the FMD and the chronic KD were associated with positive changes in self-reported Health-Related Quality of Life (HRQoL) and an improvement in Expanded Disability Status Scales (EDSS) compared to what was reported by the control diet group. Similar to the rodent study, the clinical trial also reports a reduction in lymphocyte upon FMD intervention which indicates that the diet may work in a similar manner in mice and humans. However, whether or not FMD cycles will reduce MS incidence in humans is still unclear and must be tested in larger randomized clinical trials. One of the possible mechanisms of the FMD-dependent modulation of autoimmunity involves the up-regulation of serum glucocorticoid, adiponectin and the reduction of IL-6 and leptin. RRMS patient had significantly higher leptin and resistin levels and lower levels of adiponectin and Treg cells. Therefore, PF and FMDs may stimulate endogenous production of glucocorticoid, adiponectin that may contribute to a system-wide suppression of specific immune responses.

3.2 Autoimmune Diabetes

Type 1 diabetes is an autoimmune disease commonly diagnosed in children and young adults, leading to the destruction of the insulin-producing pancreatic beta cell in the islets of Langerhans leading to a lack of insulin production. Type I diabetes is associated with the
infiltration of innate and adaptive immune cells that produce cytokines which promote beta cell apoptosis and increase infiltration of islet-specific T cells. Infiltrating T cells, predominantly CD4⁺ or CD8⁺, play an important role in the induction type 1 diabetes mellitus. Studies using human and murine models of diabetes have demonstrated that the destructive autoimmune process in type 1 diabetes requires both CD4⁺ and CD8⁺ T cells and macrophages. Although DR has been widely studied for the prevention and treatment for type 2 diabetes, the effect of different forms of DR in autoimmune type 1 diabetes is poorly understood.

Dietary restriction in Diabetes Type 1 murine models

Studies have shown that CR improves glycemic homeostasis and reduces oxidative stress and lipid peroxidation in streptozotocin (STZ)-induced type 1 diabetic (T1D) rats model. Chronic CR (30% reduction in daily caloric intake) for 9 weeks prior to STZ-induced diabetes showed a protection against diabetic insults. CR inhibits up-regulation of inflammatory cytokines (IL-1β, IL-4, and IL-6) and TNF-α, activates IL-10 and haptoglobin in the plasma of streptozotocin-induced diabetic rats. IF, performed for 30 days from 5 p.m. to 8 a.m., minimized the increase in pancreatic, hepatic and renal weight, which is commonly observed in the STZ-treated rats. IF improved glucose tolerance, insulin sensitivity and percentage of apoptotic B cells in the pancreas of STZ-induced diabetic rats. Moreover, an alteration in the dietary protein content has been shown to exacerbate diabetes. High-protein diet accelerated the onset of disease in spontaneous autoimmune models are the non-obese diabetic (NOD) mice. It was shown that the types of dietary protein have a major impact on the incidence of diabetes in the NOD mouse. NOD mice fed with meat or casein result in an early onset of the disease while mice fed with casein hydrolysate, a denatured form, or lactalbumin-based diet was relatively protected against the disease.
Recently, cycles of FMD were shown to promote the reprogramming of pancreatic islet cells, leading to the induction of a gene expression profile with similarities to that observed during fetal development and able to reverse insulin deficiency in mouse models of Type 1 and Type 2 diabetes (Cheng et al, Cell, in press). Fasting mimicking conditions also reversed insulin deficiency defects in human cells derived from autoimmune type 1 diabetes patients, indicating that FMD has the potential to treat human diabetes.

Thus, we are only beginning to understand the relationship between nutrition and the autoimmunity related to T1D. However, FMD cycles appear to have high potential for the treatment of both Type 1 and Type 2 diabetes. In fact, a recent pilot study showed a long-lasting reduction in fasting glucose in subjects who completed 3 monthly cycles of the FMD, although it is not known whether this effect involves pancreatic regeneration. Additional animal and randomized studies are needed to confirm these results and serve as the foundation for dietary FDA approved treatments for autoimmune diabetes.

3.3 Rheumatoid Arthritis

Rheumatoid arthritis (RA) is a chronic, systemic inflammatory disease, characterized by synovial hyperplasia, production of autoantibody, destruction of cartilage and bone and malformation and destruction of multiple joints. The pathogenesis of RA is complicated involving both genetic and external factors. Similar to other autoimmune disease, RA involves an aberrant pathway of T cell activation in both the initial and progression phases of the disease. However, it has become clear that pathogenesis of RA cannot simply be explained in terms of a classical antigen-driven expansion of effector T cells, but that disease progression involves a more complex autoimmune response. It is largely accepted that RA is closely associated with CD4+ T effector cells (both Th-1, 2, 17) which can be detected in RA synovial joints.
Moreover, patients with RA have a premature immune aging phenotype including accumulation of CD4^+ CD28^- T cells, telomeric shortening in hematopoietic stem cells, proliferation defects of naïve CD4 T cells, premature loss of naïve CD4 T cells telomeres, loss of telomerase in T cells, and impaired DNA damage repair due to ATM insufficiency. Different dietary interventions have been shown to or have the potential to attenuate and possibly reverse the symptoms of RA.

Dietary restriction in RA patients

Fasting has been actively integrated as an alternative therapy for RA and a number of clinical trials has been conducted to test its efficacy. Fifty-three RA patients were randomly grouped into either a control diet or fasting group in which subjects underwent fasting only once for a period ranging from 7 to 10 days followed by a vegan diet for 3.5 months. Patients in the fasting group reported a significant improvement in all clinical parameters and half of the laboratory parameters such as erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) that are correlated with RA disease severity. In a similar study, twenty RA patients were subjected to either a control or fasting (7 to 10 days) period followed by a strict vegan diet. Patients in the fasting group reported significantly less pain and an improvement in symptoms. Thus, either periodic fasting or FMD have the potential to treat RA, although larger randomized studies are necessary to test this possibility. It will be important to test the effect of cycles of FMD that are applied every 1-2 months on RA patients, with or without the need to undergo drastic dietary changes, which are unlikely to be feasible for the majority of patients.

3.4 Conclusion

We are now just beginning to understand the complex connections between metabolism and the regulation of T cells in relation to autoimmune diseases development and progression. In the
development of novel therapeutics for autoimmune disorders, targeting T cell metabolism by dietary interventions provides an alternative way to control T cell fate and function119. CR or various other dietary restrictions and particularly relatively long-term fasting, and FMDs cycles followed by re-feeding appear to decrease the biological rate of aging and promote anti-inflammatory effects, and may contribute to alleviate and possibly reverse a variety of autoimmune disorders as well as immunosenescence by killing old and damaged cells and replacing them with young and functional ones. However, the limited number of studies and of participants in studies described in this review, underlines the need for a set of larger randomized clinical trials testing both the feasibility and efficacy of FMDs, fasting and other DR-based interventions on the treatment of autoimmunities.

In summary, chronic CR and other chronic dietary restrictions have shown some efficacy in the prevention but not the treatment of autoimmunities. Thus, chronic CR and other DRs have the potential to prevent many age-related diseases, including autoimmunity, possibly by delaying aging. However, chronic CR is associated with poor compliance and long-term studies in monkeys indicate that diet composition, in addition to the restriction, may have a key role in disease prevention 57,63. In contrast, PF and FMD cycles followed by refeeding are emerging as both effective and feasible interventions with the potential for long-term and wide use. They are also emerging as powerful interventions in the treatment of other age-related diseases and conditions including immunosenescence. The ability of periodic cycles of PF/FMD to suppress autoimmune cells and the ability of the re-feeding phase to help repair the damaged sites, and to activate hematopoietic cells to provide healthy immune cells indicate that they stimulate highly sophisticated repair and regenerative programs with similarities to those activated during development (Fig. 2). Notably, the periodic PF/FMD combines a period of severe restriction
sufficiently long to promote the death of a significant portion of damaged cells with a period of high nourishment re-feeding able to promote the opposite effect on growth and other factors leading to multi-system regeneration. These programs, which may have been frequently activated under the normal conditions in which famine periods were commonly encountered, may remain dormant in individuals constantly exposed to food intake and in which fasting periods lasting for over a few days are virtually absent.

References

Table 1. Calorie and Dietary restriction

<table>
<thead>
<tr>
<th>Types</th>
<th>Definition</th>
<th>Duration</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calorie Restriction (CR)</td>
<td>20 – 40% Reduction in total calorie intake</td>
<td>Chronic</td>
<td>1,2</td>
</tr>
<tr>
<td>Ketogenic Diet (KD)</td>
<td>High-fat, low-carbohydrate diet. In human, diets with caloric contents of up to 75-80% fat and ≥ 15% protein are commonly used to treat various neurological disorders.</td>
<td>Chronic</td>
<td>3</td>
</tr>
<tr>
<td>Fasting/Prolonged Fasting (PF) / Intermittent Fasting (IF)/ Alternative Day Feeding (ADF)</td>
<td>Fasting: Complete absence of food intake. PF refers to at least 2 and usually 3 or more consecutive fasting days, which can be repeated periodically. IF and ADF eliminate or greatly reduce daily intake of food/calories intermittently (usually every other day or every 2-3 days). Usually ADF refers to alternation of a day of feeding and a day of either water only fasting or a very low calorie diet.</td>
<td>Periodic</td>
<td>4,5</td>
</tr>
<tr>
<td>Fasting mimicking diet (FMD)</td>
<td>Formulations composition of macronutrients and micronutrients specifically formulated to trigger responses such as reduced glucose and insulin-like growth factor 1 (IGF-1) level, and increased ketone bodies, while maximizing caloric intake.</td>
<td>Periodic</td>
<td>6</td>
</tr>
</tbody>
</table>

Figure 1. Change in metabolism of the activated T cells and autoimmune T cells

Metabolism plays an important role in T cell proliferation and differentiation and dysregulation of metabolism is often linked to autoimmune diseases. Upon activation, T cells primarily use aerobic glycolysis and produce lactate as a byproduct to support biosynthetic precursors that required for cellular proliferation. Increased lactate and abnormal glycolytic pathway are frequently observed in T cells from asthma and rheumatoid arthritis patients. During activation, T cells increase the expression of glutamine transporters and glutamate metabolism to support T cell proliferation and differentiation. Interestingly, the increased levels of glutamate and glutamine are observed at the site of demyelination and axonal degeneration in MS patients. Mammalian target of rapamycin (mTOR) promotes activation and differentiation of the T effector cells, and down-regulates Treg differentiation. Also, the Akt-mTOR axis act as a negative regulator of Treg cells. Activation of mTORC1 promotes glycolysis through hypoxia-induced factor 1α (HIF1α), and dysregulation of mTOR is frequently observed in MS patients. These changes in metabolism provide an unique opportunity to target for disease treatment purposes.
Figure 2. FMD-dependent modulation of autoimmunity and tissue-specific regeneration of damaged cells.

FMD causes a systemic anti-inflammatory effect and specific suppression of autoimmune cells whereas the re-feeding period stimulates hematopoietic cells to generate naïve cells to replace the immune cells eliminated. FMD also promotes tissue-specific stem cells that repair the damaged sites.
HIGHLIGHTS

- Dietary restrictions and fasting decrease immunosenescence.
- Fasting or Fasting mimicking diet promotes anti-inflammatory effects.
- Fasting mimicking diet alleviates or reverses autoimmune disorders in mice and possibly humans.